

Scott Fiedler Product Manager Humboldt Mfg. Co., Norridge, Illinois U.S.A.

GeoGauge™

- Directly measures the in-situ or in-place stiffness.
- Manufactured by Humboldt Mfg. Co. in Norridge, Illinois U.S.A.
- U.S.A. and World Patent Pending
- GeoGauge is trademark of Humboldt Mfg. Co.

Why The GeoGauge?

- To Meet A Need
 - Relentless Pursuit of Lower Cost & Higher Quality
- By Achieving A Goal
 - Increased Precision of Design & Construction
 - Mechanistic Designs
 - Performance Specifications
 - Process Control
 - Increased Continuity Between Design & Construction
 - Design Parameters Used to Evaluate Construction
 - Contractor Warranties
- Through A Historically Successful Path
 - Structural Stiffness & Material Modulus
 - Engineering / Mechanistic Values

Physical Attributes

- Size: 280mm diameter x 255mm tall
- 114mm OD x 89mm ID Ring Foot
- Weight: 10 kg
- Powered by 6 D-Cell Batteries
- IR Data Downloading (Optional)
- Keypad User Interface

- At GeoGauge Frequencies & Stress, Impedance is Predominately Stiffness
- No Need for a Non-Moving Displacement Reference
- Permits the Accurate Measurement of Small Displacements

$$F_{dr} = K_{flex} (X_2 - X_1) \qquad F_{dr} = K_{flex} (X_2 - X_1) + \tilde{u}^2 m_{int} X_1$$

$$K_{gr} = \frac{F_{dr}}{X_1} \qquad F_{dr} = K_{flex} (X_2 - X_1) + \tilde{u}^2 m_{int} X_1$$

$$\overline{K_{gr}} = K_{flex} \sum_{n=1}^{n} \frac{(X_2 - X_1)}{X_1} = K_{flex} \sum_{n=1}^{n} \frac{(V_2 - V_1)}{V_1} = K_{flex} \sum_{n=1}^{n} \frac{(V_2 - V_1)}{V_1}$$

Measurement Procedure

- Inspect GeoGauge
- Power On
- Select Mode & Poisson's Ratio
- Seat the Foot
 - <u>></u> 60% Direct Contact
 - Moist Sand Assisted (3 to 6 mm thick)
 - Rough & Irregular Surfaces
 - Smooth Hard Surfaces
- Take the Measurement:
 - 75 Seconds (15 sec. Noise + 60 sec. Signal)
 - Results Displayed
 - Signal/Noise: > 3/1 (10 db)
 - Standard Deviation: a Measure of Foot Contact
 - Average Stiffness or Modulus (English or SI)
- Examine the Foot Print
- Save Data

Specification

- Stiffness: 3 to >70 MN/m (17 to >399 klbf/in)
- Young's Modulus: 26 to >607 MPa (4 to >88 kpsi)
- Poisson's Ratio: 0.20 to 0.70 in 0.05 Increments
- Precision: Typically 3.9% Coefficient of Variation
- Bias: < 1% Coefficient of Variation
- Depth of Measurement: 220 to 310 mm
- Battery Life: > 1,500 measurements
- Operating Temperature: 0 to 38°C

Precision Single Gauge

Date	Site	Material	Typical Stiffness, MN/ m		Coeff. Of Var., %			
			Mean	1 ⁰	Mean	65% Confidence	95% Confidence	
8/16/96	Salisbury ByPass	Silty Sand	6.28	0.28	4.08	6.01	7.94	
9/19/96	NM 44	Sandy Clay Subgrade [*]	11.33	0.37	3.31	-	-	
10/12/96	16 Vegas Dr.	Sility Clay**	8.86	0.47	5.35	7.17	9.00	
10/13/96	16 Vegas Dr.	Full Depth Pavement*	51.37	2.17	4.25	5.66	7.07	
10/19/96	I70/I270	Graded GAB*	40.20	1.57	3.84	5.21	6.58	
10/28/96	Rutters	Fat Clay*	12.74	0.35	2.67	3.13	3.59	

* Assisted Seating (moist sand)

** Unprepared ground

- Typical Coefficient Of Variation: 3.9%
- Basis: 3 Gauges, 3 Operators & 470 Measurements

Precision Multiple Gauges

Date	Site	Material	No. of Measurements	Stiffness, Mℕ m		Coeff. of Var.
				Mean	₁ σ	%
11/6/96	16 Vegas Dr.	Sility Clay≉*	12	8.50	0.33	3.89
11/6/96	16 Vegas Dr.	Sility Clay≉*	30	9.94	0.39	3.91
11/7/96	16 Vegas Dr.	Full Depth Pavement*	16	44.83	1.72	3.83
11/23/96	16 Vegas Dr.	Sility Clay≉*	10	10.06	0.59	5.84

* Assisted Seating (moist sand)** Unprepared ground

- Statistics Based on Combined Measurements From Both Gauges
- Basis: 2 Gauges, 1 Operator & 68 Measurements

Bias

- Reference: Moving Mass
 - Known Mass: 10 kg
 - 25 Known Frequencies: 100 to 196 Hz
 - Stiffness = $-j\omega^2 M$
- Coefficient of variation: < 1%

Calibration Platen

- Reference: Moving Mass, Platen of Certain Geometry
 - Known Mass: 10 kg
 - 25 Known Frequencies: 100 to 196 Hz
 - Stiffness = $-j\omega^2 M$
- Coefficient of variation: < 1%

Verifier Mass

 Used whenever a check of GeoGauge operation is desired

What is GeoGauge Stiffness ?

Quasi-Static Field Plate Load Test Results

GeoGauge Stiffness: How To Confirm It? University of New Mexico, ATR Institute

- Model Footing Precisely Constructed of Cohesionless Sand
- Measure Stiffness With GeoGauge
- Calculate 9' Layer Stiffness From:
 - Measured Void Ratio
 - Estimated Mean Effective Stress ₃ Under GeoGauge Foot
 - Estimated Poisson's Ratio
- Measured Stiffness Within 5% of Calculated Value
- GeoGauge Can Sense Boundaries
 Up to 12" From I ts Foot
- To be Repeated on Silt, Clay & Layered Media

Correlation to Other Moduli

GeoGauge, E_G, (MPa)

Other Correlations

- Resilient Modulus
- Unconfined Compressive Strength
- California Bearing Ratio (CBR)
- Dynamic Cone Penetrometer (DCP)
- Static Cone Penetrometer
- Plate Load

GeoGauge Alternatives

*Production Test: One that does not delay or interfere with construction

Development: BBN Shallow Soil Seismic/Acoustic Research

- Soil Physics & Measurements
 - Soil Impedance
 - Wave Propagation
- Transducer Coupling Research
- System Development & Displays

BBN Proprietary Weight-biased Geophones and Compact Vibrator Source

Seismic Sonar Display of Response of Mine

Design Validation

- Alpha
 - Field Trials: MN, NY & TX
 - Construction Noise: Freq. Shift & Improved Filtering
 - Calibration: Soil vs. Elastomer vs. Mass
 - Relationship Between Density & Modulus
- Beta
 - Field Trials: MN, TX, NC, FL, OH, CA, NJ & MO
 - Usability & Reliability
 - Manufacturing & Test Methods Development
 - Establish Precision & Bias
- Standards Development
 - ASTM
 - AASHTO

Benefits of Stiffness & Modulus Today

- Control of Compaction
- •Mitigating the Risk of Pavement Failure
- •Control of Stabilized Fill Quality

Control of Compaction Quality

- Job by Job / Material by ٠ Material Evaluation
- Stiffness added to Proctor • or Proctor Like Testing
- Empirical Relationship vs. Moisture Determined
 - "Unique" Stiffness of each Moisture & Density Pair
- Stiffness Lab / Test Strip • Correction (Proctor Mold)
- Conditions for Using ٠ Stiffness
 - Lift Thickness: > 8"
 - Awareness of Variability from Lift Support

Control of the Compaction Process

- Compaction of A Layer Is Only As Good As the Supporting Material Will Allow
- Directly Measure Compaction (Rate of Increase in Stiffness) As a Function of Effort
- When the Rate Is Approx. Constant, the Compaction Is Optimized
- ~ 30% Reduction inCompactive Effort Possible

Mitigating the Risk of Pavement Failure More Uniform Stiffness = More Time Between Failures

HUMBOLDT

Control of Stabilized Fill Quality

- "Is the Fill Hard Enough?"
- "Has Rain Inhibited Stabilization?"
- "Can I Customize Stabilization?"
- GeoGauge Can Enable:
 - Monitoring of Material Cure Rate
 - Direct Measurement of Material Modulus
 - Laboratory Design of Custom Mixes & Determination of Indexes for Evaluating Construction
- GeoGauge Specified By USAF for Runway Infield Stabilization
 - Used to Estimate Increases in CBR

Other Applications

- Specification Development
- Mechanistic Design Validation
- Buried Structures QC
- Utility Back-Fills QC
- Determination of HMA "Tender Zone"
- Evaluation of Controlled Low Strength Materials
- Quantification of Soil-Cement Micro-Cracking
- Cold Mix Asphalt QC

